Gaussian Markov Random Field Models for Surveillance Error and Geographic Boundaries
نویسندگان
چکیده
GAUSSIAN MARKOV RANDOM FIELD MODELS FOR SURVEILLANCE ERROR AND GEOGRAPHIC BOUNDARIES
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملExtending INLA to a class of near - Gaussian latent models by
This work extends the Integrated Nested Laplace Approximation (INLA) method to latent models outside the scope of latent Gaussian models, where independent components of the latent field can have a near-Gaussian distribution. Two important class of models that can be addressed with our proposed method are non-Gaussian random effects models and dynamic models with non-Gaussian error term for the...
متن کاملStochastic wavelet-based image modeling using factor graphs and its application to denoising
In this work, we introduce a hidden Markov field model for wavelet image coefficients within a subband and apply it to the image denoising problem. Specifically, we propose to model wavelet image coefficients within subbands as Gaussian random variables with parameters determined by the underlying hidden Markov process. Our model is inspired by the recent Estimation-Quantization (EQ) image code...
متن کامل